Uji chi square adalah uji statistik yang
dilakukan bertujuan untuk mencari hubungan antara satu variable bebas dengan
satu variable terikat, atau disebut juga analisis bivariat. Uji chi square
digunakan untuk mencari perbedaan proporsi/persentase antara dua kelompok yang
saling bebas atau tidak berpasangan. Data yang digunakan dalam uji chi square
adalah data dalam bentuk frekuensi. Data frekuensi ini merupakan hasil
pengklasifikasian data yang berbentuk nominal.
Untuk melakukan uji chi square
kita dapat menggunakan fasilitas Crosstab yang terdapat pada program SPSS. Untuk
langkah-langkah pengujiannya adalah sebagai berikut:
1. Buka data pada lembar kerja SPSS.
2. Klik variable view yang ada di pojok
kiri bawah.
3. Isi kolom name dengan nama
variable.
4. Isi values dengan
kode pengklasifikasian data variable.
5. Klik data view yang ada di pojok
kiri bawah.
6. Isikan data sesuai nama variable yang telah kita buat di
variable view.
7. Pilih menu Analyze à Descriptive Statistics à Crosstabs.
8. Pada kotak dialog Crosstabs, masukkan variable Y ke
kotak Column(s). Dan variable X ke kotak Row(s).
9. Klik Statistics.
10. Pada kotak dialog Crosstabs: Statistics, centang Chi-square. Pada nominal centang Contingency
coefficient.
11. Klik Continue.
12. Klik Cells.
13. Pada kotak dialog Crosstabs: Cell Display, centang Observed dan Expected
pada counts. Pada percentages centang Row.
14. Klik Continue.
15. Klik OK.
Setelah kita mendapatkan output dari SPSS
yaitu table Chi-Square Tests. Kita akan melihat
nilai Asymp. Sig (2-tailed).
Sebelum mengambil kesimpulan dari hasil uji
chi square, kita harus mengetahui dulu syarat untuk dapat menggunakan chi
square, yaitu:
1.
Tidak boleh ada cell yang nilai expectednya < 1.
2.
Tidak boleh ada cell dengan nilai expected <5 lebih dari 20%
total cell.
Dasar pengambilan keputusan
dalam uji chi square dengan melihat nilai Pearson
Chi-Square adalah sebagai berikut:
Jika nilai
signifikansi kurang dari 0,05, maka terdapat perbedaan proporsi kejadian antara
kelompok 1 dan kelompok 2. Sehingga dapat disimpulkan terdapat hubungan antara variable
bebas (X) dan variable terikat (Y). Sebaliknya Jika nilai signifikansi lebih
dari 0,05, maka tidak terdapat perbedaan proporsi kejadian antara kelompok 1
dan kelompok 2. Sehingga dapat disimpulkan bahwa variable bebas (X) dan variable
terikat (Y) tidak berhubungan.